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Abstract
We have investigated the relaxation dynamics of image restoration through a
Bayesian approach. The relaxation dynamics is much faster at zero temperature
than at the Nishimori temperature where the pixel-wise error rate is minimized
in equilibrium. At low temperature, we observed non-monotonic development
of the overlap. We suggest that the optimal performance is realized through
premature termination in the relaxation processes in the case of the infinite-
range model. We also performed Markov chain Monte Carlo simulations to
clarify the underlying mechanism of non-trivial behaviour at low temperature
by checking the local field distributions of each pixel.

PACS numbers: 02.50.−r, 05.20.−y, 05.50.+q, 75.10.Nr, 89.70.+c

1. Introduction

Equilibrium statistical mechanics has been applied to probabilistic information processing
such as image restoration [1–9], error-correcting codes [5, 10–12] and code-division multiple
access (CDMA) multi-user demodulation [13, 14] based on Bayesian statistics [15]. This
approach enables us to analytically estimate the performance of the results obtained for these
problems and the dependence of the error rate on the restoration/decoding temperature [5].
However, only static properties of the solutions can be investigated through this approach.

Markov chain Monte Carlo (MCMC) has been used to obtain solutions which maximize
the posterior probability (MAP) or the posterior marginals (MPM) within the framework
of Bayesian inference. The MPM estimate is also called the finite-temperature restoration
whereas the MAP estimate corresponds to the zero-temperature restoration. When the image
restoration is performed at a specific temperature, called the Nishimori temperature [5, 15, 16],
the pixel-wise error rate can be minimized. However, it is unclear whether the Nishimori
temperature is optimal in the MCMC relaxation processes. It is important to describe the
dynamics in order to examine dynamical properties such as the dependence of the relaxation
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speed on the temperature and the transient behaviour of the system. However, much less work
has been done regarding the analysis of MCMC relaxation processes to get the MPM estimate
[6, 17, 18].

In this paper, the relaxation processes of image restoration are investigated by means of
statistical mechanics. Starting from the microscopic time evolution equations of the system, we
have analysed the dynamics using a few macroscopic variables which describe the system. In
section 2, we describe the model of image restoration within a Bayesian inference framework.
In section 3, we explain the mean-field theory of image restoration for equilibrium properties
and non-equilibrium dynamics. In section 4, we analyse the dynamics of restoration by
describing the time evolution equations of macrovariables. We have performed MCMC
simulations to gain an intuitive understanding of the underlying mechanism of the non-trivial
behaviour at low temperature.

We have also examined two-dimensional images which are difficult to investigate
analytically.

2. Model

Let us consider the problem in which we estimate the original image ξ = (ξ1, . . . , ξN), ξi = ±1
from the corrupted image τ = (τ1, . . . , τN). Under the framework of Bayesian inference,
we first have to assume a corruption process. One corruption model is the binary symmetric
channel (BSC) where τi is equal to ±ξi with probabilities 1 − pr and pr respectively. The
probability can be written as

P(τ |ξ) = exp
(
βτ

∑
i τiξi

)
(2 cosh βτ )N

(1)

where βτ = 1
2 ln 1−pr

pr
.

Another corruption model is the Gaussian channel,

P(τ |ξ) = 1

(
√

2πτ)N
exp

[
−

∑
i

(τi − τ0ξi)
2

2τ 2

]
. (2)

Hereafter, the Gaussian channel model is assumed. We also assume that the original images
are generated according to the prior probability:

Ps(ξ) = exp
(
βs

∑
〈ij〉 ξiξj

)
Z(βs)

(3)

where
∑

〈ij〉 denotes the summation over the couplings between all pixels for the infinite-range
model and the couplings between nearest neighbours for two-dimensional images, respectively.
βs(= 1/Ts) is the inverse temperature at which the original image is generated.

According to the Bayes formula, the posterior probability of the original image ξ can be
obtained as

P(ξ|τ ) = P(τ |ξ)Ps(ξ)

TrξP(τ |ξ)Ps(ξ)

= exp
(
βs

∑
〈ij〉 ξiξj + τ0

τ 2

∑
i τiξi

)
Trξ exp

(
βs

∑
〈ij〉 ξiξj + τ0

τ 2

∑
i τiξi

) .

When image restoration is performed, parameters such as βs, τ0 and τ are not provided
beforehand, so we have to estimate or adjust these parameters. Therefore, we use the notation
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of βm(= 1/Tm) and h instead of βs and τ0/τ
2, respectively. We denote the restored image as

σ to avoid any confusion with the original image, thus the posterior probability is given by

P(σ|τ ) = exp
(
βm

∑
〈ij〉 σiσj + h

∑
i τiσi

)
Trσ exp

(
βm

∑
〈ij〉 σiσj + h

∑
i τiσi

) . (4)

We can recognize the formal similarity to the Boltzmann factor of an Ising spin system with
ferromagnetic interactions and random external fields.

The MAP estimate is a method for estimating an original image from the posterior
probability. The maximization process of the posterior probability is equivalent to a ground-
state search of an Ising spin system with the Hamiltonian

H(σ) = −βm

∑
〈ij〉

σiσj − h
∑

i

τiσi . (5)

On the other hand, the MPM estimate is given by maximization of the posterior marginals,

P(σi |τ ) = Trσ(�=σi ) exp
(
βm

∑
σiσj + h

∑
i τiσi

)
Trσ exp

(
βm

∑
σiσj + h

∑
i τiσi

) . (6)

In this case, the estimate of each pixel is given by

ξ̂i = sgn


 ∑

σi=±1

σiP (σi |τ )


 = sgn〈σi〉 (7)

which minimizes the pixel-wise error rate.

3. Mean-field theory

3.1. Equilibrium

One of our goals is to obtain the average overlap between an original image and the
corresponding restored image,

M(βm, h) ≡ 〈ξisgn〈σi〉|β∗
m, h∗〉

≡
∫

dτ
∑

ξ

Ps(ξ)P (τ |ξ)ξisgn〈σi〉 (8)

so that we can use it as a performance measure, where β∗
m and h∗ are the true parameters equal

to βs and τ0/τ
2, respectively. Nishimori and Wong [5] have derived a rigorous inequality,

M(βm, h) � M(β∗
m, h∗) = M(βs, τ0/τ

2). (9)

We refer to the parameters (βm, h) = (β∗
m, h∗) as the Nishimori temperature, which

corresponds to the Nishimori line in spin-glass theory [16].
The equilibrium properties of such a system have been investigated through the replica

method for the infinite-range model [5],

H = −βm

N

∑
i<j

σiσj − h
∑

i

τiσi (10)

where the summation is carried out for all pixel pairs. Static properties are described using
the order parameters

m0 ≡ 1

N

∑
i

ξi = tanh(βsm0)
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Figure 1. Temperature dependence of the average overlap M: Ts = 0.9, τ0 = τ = 1.0, and h/βm

was held constant relative to the optimal value, (τ0/τ
2)/βs .

and

m ≡ 1

N

∑
i

σi = Trξ
∫

Dx eβsm0ξ tanh(βmm + τhx + τ0hξ)

2 cosh(βsm0)

where Dx = 1/
√

2π e− 1
2 x2

dx. The overlap M is given by

M ≡ 1

N

∑
i

ξi ξ̂i = Trξ
∫

Dx eβsm0ξ ξsgn(βmm + τhx + τ0hξ)

2 cosh(βsm0)
. (11)

Hereafter, we consider the behaviour of the overlap as a function of βm when h/βm is
held constant relative to the optimal value (τ0/τ

2)/βs . The overlap shows non-monotonic
behaviour which reaches its extreme at Tm = Ts in figure 1; this temperature corresponds to
the Nishimori temperature [5]. However, it is non-trivial whether the Nishimori temperature
is optimal in the relaxation processes in the sense that the relaxation is fastest. Therefore, we
analysed the relaxation processes as discussed below.

3.2. Dynamics

We derived differential equations for the infinite-range model with respect to macroscopic
order parameters as was done by Inoue and Tanaka [17]. The transition probability of the kth
spin, which has the Hamiltonian (5), is given by

wk(σ) = 1
2 {1 − σk tanh[hk(σ)]} (12)

where hk(σ) is the local field of the kth spin and hk(σ) = βm

N

∑
j �=k σj + hτk . We rescaled the

coupling as 1/N to obtain a proper thermodynamic limit. Starting from the master equation

dpt(σ)

dt
=

N∑
k=1

[pt(Fk(σ))wk(Fk(σ)) − pt(σ)wk(σ)] (13)

the system dynamics can be described using the time development equations for
macrovariables m and a ≡ 1

N

∑
τiσi . Here, Fk is a spin-flip operator, and Fk�(σ) ≡



Non-monotonic behaviour in relaxation dynamics of image restoration 11015

�(σ1, . . . ,−σk, . . . , σN). The probability that the system has order parameters m and a is
given by

Pt(m, a) =
∑

σ

Pt(σ)δ(m − m(σ))δ(a − a(σ)). (14)

The time evolution equation of the macroscopic probability distribution is obtained by
differentiating Pt(m, a) with t, substituting through equation (13) and Taylor expansion:

dPt(m, a)

dt
= ∂

∂m
Pt(m, a)

{
m −

∑
ξ eβsm0ξ

2 cosh(βsm0)

∫ ∞

−∞
Dx tanh(Jm + hτx + hτ0ξ)

}

+
∂

∂a
Pt (m, a)

{
a −

∑
ξ eβsm0ξ

2 cosh(βsm0)

∫ ∞

−∞
Dx(τx + τ0ξ) tanh(Jm + hτx + hτ0ξ)

}

+ O(N−1). (15)

At the limit N → ∞, equation (15) acquires the Liouville form and describes the deterministic
flow at the macroscopic level (m, a). The time-dependent behaviour of the macrovariables is
given by

dm

dt
= −m +

Trξ
∫

Dx eβsm0ξ tanh(βmm + τhx + τ0hξ)

2 cosh(βsm0)
(16)

and

da

dt
= −a +

Trξ
∫

Dx eβsm0ξ (τx + τ0ξ) tanh(βmm + τhx + τ0hξ)

2 cosh(βsm0)
. (17)

Here the equation for m is independent of a, so the time-dependent behaviour of the system
is given only by equation (16). The overlap M is obtained by solving the equation for m and
substituting m into equation (11).

4. Results

4.1. Theory

The dependence of the time evolution of the overlap M on the restoration temperature is shown
in figure 2. The temperature Tm = 1/βm was set to 0.1 (low temperature), 0.9 (=1/βs , the
Nishimori temperature) and 2.0 (high temperature). The relaxation occurred more rapidly at
low temperature than at the Nishimori temperature where the pixel-wise error rate is optimal
in equilibrium. The optimal overlap of the Nishimori temperature is achieved at an early
stage of the relaxation process at low temperature. As for the dynamics of m, the relaxation
occurs more quickly at low temperature and passes through the equilibrium value mopt of the
Nishimori temperature in figure 3. The overlap M is a non-monotonic function of m in figure 4
and reaches a maximum at m = mopt. This causes the non-monotonic behaviour of M. At low
temperature, m reaches the optimal mopt more quickly (figure 3), and M reaches its maximum
value early in the time evolution.

We can intuitively understand this mechanism by considering the time development of the
local field distributions. Figure 5 shows the time evolution of local field distributions obtained
from MCMC simulations with N = 100 000, Ts = 0.9 and τ0 = τ = 1.0. True distributions
(inset) were fitted using Gaussian distributions to see how the distribution changed over time.
For the infinite-range model, the local field of each spin is represented in terms of magnetization
m: hi 	 βmm + hτi . The second term is fixed during the time development and gives two
Gaussian distributions, one for ξi = 1 and another for ξi = −1, since τi = τ0ξi + τz, where z
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Figure 2. Time evolution of the overlap M: Tm = 0.1, Tm = 0.9 (= Ts , the Nishimori temperature),
Tm = 2.0, τ0 = τ = 1.0, h/βm was held constant at the optimal value, (τ0/τ

2)/βs .
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Figure 3. Time evolution of the order parameter m: Tm = 0.1, Tm = 0.9 (= Ts, the Nishimori
temperature), Tm = 2.0.

is Gaussian with mean 0 and variance 1. Over time, m in the first term approaches 1 and the
peaks of both distributions shift to the right (figure 5). At low temperature, starting from the
initial distributions (dotted lines) at t = 0, the distributions for both ξi = 1 and ξi = −1 shift
to the right. Because of this shift, the error rate increases in the distribution for ξi = −1 since
the estimated pixel value is given by ξ̂i = sgn(hi). However, the error rate in the distribution
for ξi = 1 decreases. The magnetization m, or the state which gives the minimal error rate,
is the equilibrium value mopt at the Nishimori temperature. Over time, the distribution passes
through equilibrium at the Nishimori temperature (solid lines). When the restoration is done
at low temperature, m passes through mopt in the dynamics and becomes larger than this value.
As a result, M shows non-monotonic behaviour.
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Figure 5. Time evolution of the local field distribution for the infinite-range model: these are
the results of MCMC simulations with N = 100 000, Ts = 0.9 and τ0 = τ = 1.0. h/βm was
kept constant at the optimal value (τ0/τ

2)/βs . True distributions (inset) were fitted according to
Gaussian distributions. Solid lines show the equilibrium local field distributions at the Nishimori
temperature (Tm = 0.9). At low temperature (Tm = 0.1), starting from the initial distributions
(dotted lines) at t = 0, the distributions for both ξi = 1 and ξi = −1 shifted to the right (dashed
lines at t = 10). In the middle of the time evolution, the distribution passed through the equilibrium
distribution at the Nishimori temperature. Because of this shift, the probability of error decreased
in the distribution for ξi = 1, whereas for ξi = −1 the error increased.

These results suggest that at low temperature, the system transiently passes through
the optimal state before reaching equilibrium. This means that the optimal solution can be
obtained through premature termination of the system, at least in the case of the infinite-range
model. We can obtain the timing of termination theoretically if we know the properties of
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Figure 6. Time evolution of the local field distribution for the two-dimensional model. These
are MCMC simulation results with N = 100 × 100, Ts = 2.2 and τ0 = τ = 1.0; h/βm was
kept constant relative to the optimal value, (τ0/τ

2)/βs . True distributions (inset) were fitted
according to Gaussian distributions. Solid lines show the equilibrium local field distributions at
the Nishimori temperature (Ts = 2.2). Dashed lines represent the time evolution of distributions at
low temperature (Tm = 1.0). Time is shown as a parameter. At low temperature, starting from the
initial distributions at t = 0, both of the distributions approach that of the Nishimori temperature
and are very similar at t = 4.

noisy channels, such as the spin-flip probabilities. We can thus design a criterion to use for
terminating the dynamics before they reach equilibrium. Specifically, by solving equation (16),
we can predict the dynamical properties shown in figure 2 if we know the hyperparameters.

4.2. Two-dimensional system

It is interesting to see whether the non-monotonic behaviour at low temperature would hold
in the case of a two-dimensional image. However, a two-dimensional system corresponds to
a two-dimensional random field Ising model, which is difficult to investigate analytically. We
therefore performed Monte Carlo simulations to investigate the restoration of two-dimensional
images.

We generated the original image (N = 100 × 100) by relaxing the Ising spin systems
with nearest-neighbour interactions at the temperature Ts = 2.15 or 2.2 (below the critical
temperature). We used the Gaussian channel model with τ0 = 1 and τ = 1 for distortion.
Starting from the distorted image, we performed image restoration by updating each pixel
according to equation (12). Here, hk(σ) = βm

∑
n.n. σj + hτk .

Figure 6 shows the time evolution of the local field distribution during restoration at low
temperature. At the beginning of the relaxation, the distribution approaches the equilibrium
distribution at the Nishimori temperature and is overlapped at about t = 4. This figure suggests
that the same mechanism as that of the infinite-range model is applicable to a two-dimensional
system. In other words, the state of the system transiently passes through the Nishimori
temperature optimal configuration at low temperature.
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over 100 samples.

 0.89

 0.892

 0.894

 0.896

 0.898

 0.9

 0.902

 0.904

 0.906

 0.908

 0.91

 0.912

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

T

M

m

Figure 8. Temperature dependence of the overlap M: Ts = 2.15, N = 100 × 100, 100 samples.

In the case of the infinite-range model, it is possible to measure the overlap by the local
field. However, this is not true in the case of a two-dimensional system. The time evolution of
overlap M(〈σ 〉) is difficult to measure because the overlap is a function of the thermal average
of the spins. If non-monotonic behaviour at low temperature in the infinite-range model is
true for the two-dimensional system, it should occur at a very early stage (t = 4) in figure 6.
Therefore, it is meaningless to measure the thermal average of spins by taking averages using
a finite time window.

We prepared 100 samples for ξ and τ . For each sample, we performed P(= 999) runs
using different random numbers, stored the spin configurations at each time for each run and
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obtained the average
〈
σ t

i

〉 ≡ 1
P

∑P
m=1 σ t

i (m). We then averaged the time evolution of the
overlap M over 100 samples. (Figure 7 shows the time evolution of the overlap M.) We were
unable to observe non-monotonic behaviour of the overlap at low temperature in the case of the
two-dimensional system. One reason for this might be that the overlap M was almost constant
at temperatures lower than the Nishimori temperature, as in figure 8. It was difficult to obtain
statistically significant non-monotonic behaviour. We can still conclude, though, that there is
at least a possibility that the system passes through the optimal state at the beginning of the
relaxation at low temperature, as suggested by the time evolution of the local field distributions
in figure 6.

5. Conclusion

In this paper, we have described the relaxation processes of image restoration by means of
statistical mechanics.

An image can be restored much faster at low temperature than at the Nishimori
temperature, and in the middle of the relaxation process the overlap M reaches a maximum
value. This value is the same as the equilibrium solution for restoration at the Nishimori
temperature. This suggests that the system goes through the optimal state in the MPM sense
before reaching equilibrium, and that the premature termination of the system in the process
is an effective means to obtain the optimal solution more quickly at least in the case of
the infinite-range model. We can design a criterion according to which the dynamics are
terminated before reaching equilibrium. Specifically, by solving equation (16), we can predict
the dynamical properties as shown in figure 2 if we know the hyperparameters.
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